Сайт репетитора по математике Фельдман Инны Владимировны. Профессиональные услуги репетитора по математике в Москве. Подготовка к ГИА и ЕГЭ, помощь отстающим.

Решение рациональных неравенств методом интервалов

Метод интервалов - это универсальный способ решения практически любых  неравенств, которые встречаются в школьном курсе алгебры.  Он основан на следующих свойствах функций:

1. Непрерывная функция  g(x) может изменить знак только в той точке, в которой она равна 0. Графически  это означает, что график непрерывной функции может перейти из одной полуплоскости в другую, только если пересечет ось абсцисс (мы помним, что  ордината любой точки, лежащей на оси ОХ (оси абсцисс) равна нулю, то есть значение функции в этой точке равно 0):

 Мы видим, что функция y=g(x), изображенная на графике пересекает ось ОХ в точках х= -8, х=-2, х=4, х=8. Эти точки называются нулями функции. И в этих же точках функция g(x)  меняет знак.

2. Функция также может менять знак в нулях знаменателя - простейший пример хорошо известная функция  :

Мы видим, что функция  меняет знак в корне знаменателя, в точке , но при этом не обращается в ноль ни в одной точке. Таким образом, если функция содержит дробь, она может менять знак в корнях знаменателя.

2. Однако, функция не всегда меняет знак в корне числителя или в корне знаменателя.  Например, функция y=x2 не меняет знак  в точке х=0:

Т.к. уравнение x2 =0 имеет два равных корня х=0, в точке х=0 функция как бы дважды обращается в 0. Такой корень называется корнем второй кратности.

Функция меняет знак в нуле числителя, , но не меняет знак в нуле знаменателя: , так как корень  - корень второй кратности, то есть четной кратности:

 

Важно! В корнях четной кратности функция знак не меняет. 

Обратите внимание! Любое нелинейное  неравенство школьного курса алгебры, как правило, решается с помощью метода интервалов.

Предлагаю вам подробный алгоритм решения неравенств методом  интервалов, следуя которому вы сможете избежать ошибок при решении нелинейных неравенств.

1. Для начала необходимо привести неравенство к виду

Р(х)V0,

где   V-  знак неравенства: <,>,≤ или ≥. Для этого необходимо:

а) перенести все слагаемые в левую часть неравенства,

б) найти корни получившегося выражения,

в) разложить левую часть неравенства на множители

г) одинаковые множители записать в виде степени.

Внимание! Последнее действие необходимо сделать, чтобы не ошибиться с кратностью корней - если в результате получится множитель в четной степени,  значит, соответствующий корень имеет четную кратность.

2. Нанести найденные корни на числовую ось.

3. Если неравенство строгое, то кружки, обозначающие корни на числовой оси оставляем "пустыми", если неравенство нестрогое, то кружки закрашиваем.

4. Выделяем корни четной кратности - в них Р(х) знак не меняет.

5. Определяем знак Р(х) на самом правом промежутке. Для этого берем произвольное значение х0, которое больше большего корня и подставляем в Р(х).

Если P(x0)>0 (или ≥0), то в самом правом промежутке ставим знак "+".

Если P(x0)<0 (или ≤0), то в самом правом промежутке ставим знак "-".

6. Далее двигаемся  влево по числовой прямой и расставляем знаки: при переходе через точку, обозначающую корень нечетной кратности происходит смена знака.

При переходе через точку, обозначающую корень четной кратности знак НЕ МЕНЯЕТСЯ.

7. Еще раз смотрим на знак исходного неравенства,  и выделяем промежутки нужного нам знака.

8. Внимание! Если наше неравенство НЕСТРОГОЕ, то условие равенства нулю проверяем отдельно.

9. Записываем ответ.

Если исходное неравенство  содержит неизвестное в знаменателе, то также переносим все слагаемых влево, и приводим левую часть неравенства к виду

   

(где   V-  знак неравенства: < или >)

Строгое неравенство такого вида равносильно неравенству

   

НЕстрогое неравенство  вида

   

равносильно системе:

   

На практике, если функция имеет вид , то поступаем следующим образом:

  1. Находим корни числителя и знаменателя.
  2. Наносим их на ось. Все кружки оставляем пустыми. Затем, если неравенство не строгое, то корни числителя закрашиваем, а корни знаменателя всегда оставляем пустыми.
  3. Далее следуем общему алгоритму:
  4. Выделяем корни четной кратности (если числитель и знаменатель содержат одинаковые корни, то считаем, сколько раз встречаются одинаковые корни). В корнях четной кратности смены знака не происходит.
  5. Выясняем знак на самом правом промежутке.
  6. Расставляем знаки.
  7. В случае нестрого неравенства условие равенства условие равенства нулю проверяем отдельно.
  8. Выделяем нужные промежутки и отдельно стоящие корни.
  9. Записываем ответ.

Чтобы лучше понять алгоритм решения  неравенств методом интервалов, посмотрите ВИДЕОУРОК, в котором подробно разбирается пример решения неравенства методом интервалов.

Решение  рациональных неравенств методом интервалов

Отзывов (15)

  1. Павел

    как определяем знак неравенства при переходе точки четной кратности?

    • Инна

      Определяем знак на любом промежутке, а затем расставляем знаки соответственно кратности корней. При переходе через корень четной кратности знак не меняется, а при переходе через корень нечетной кратности меняется.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *