Сайт репетитора по математике Фельдман Инны Владимировны. Профессиональные услуги репетитора по математике в Москве. Подготовка к ГИА и ЕГЭ, помощь отстающим.

Элементы комбинаторики

Правило сложения

Правило сложения используется в том случае, если у нас есть два или более множеств, которые попарно не пересекаются, то есть не имеют общих элементов. И нам нужно найти сколько элементов содержится в объединении этих множеств. В этом случае мы складываем число элементов в каждом множестве. Простейший пример: если у нас есть две корзинки с фруктами: в одной 5 яблок, а в другой 7 груш. Если мы эти  фрукты пересыпаем в одну корзинку (объединяем множества), тогда в новой корзинке окажется 5+7=12 фруктов.

Правило умножения

Правило умножения используется в том случае, если у нас есть два множества, и мы составляем всевозможные пары из элементов этих множеств. Например, если взять множество, состоящее из 5-ти яблок и множество, состоящее из 7-ми груш и составить всевозможные пары из этих фруктов, то мы получим всевозможных пар.

Действительно. Возьмем первое яблоко. Мы можем положить к нему любую из семи груш, то есть получаем 7 пар. Возьмем второе яблоко, и к нему мы также можем положить любую из 7-ми груш, получаем ещё 7 пар.  И так далее. Всего получается пар.

Правило умножения легко понять, если попытаться ответить, например, на такой вопрос: "сколько существует двузначных чисел?"

Пусть двузначное чиcло имеет вид , где - число десятков, - число единиц. При этом цифра может принимать значения от 1 до 9 ( цифра 0 не может стоять на первом месте, так как в этом случаем мы получим однозначное число), цифра   может принимать значения от 0 до 9.

Пусть , и у нас есть 10 вариантов цифр, которые могут стоять на втором месте. Тогда мы имеем 10 двузначных чисел, содержащих 1 десяток.

Затем мы берем и так же получаем 10 двузначных чисел, у которых теперь уже 2 десятка.

И так далее.

Так как цифра может принимать 9 различных значений, то получаем двузначных чисел.

Зная, что на первом месте может стоять 9 различных цифр, а на втором  - 10, мы получаем комбинаций этих цифр, то есть все возможные двузначные числа. Здесь важно понимать, что любая цифра, стоящая на первом месте, может сочетаться с любой цифрой, стоящей на втором месте.

В общем случае правило умножения звучит так:

Если элемент A можно выбрать n способами, и при любом выборе A элемент B можно выбрать m способами, то пару (A, B) можно выбрать n·m способами. Это правило распространяется на любое число независимо выбираемых элементов.

Если мы хотим ответить на вопрос, сколько существует трехзначных чисел, мы заметим, что в трехзначном числе первая цифра может принимать 9 значений, вторая   - 10, и третья - 10 значений. И мы получаем трехзначных чисел.

 

Формула включений-исключений

используется в том случае, если нам нужно найти число элементов в объединении двух множеств, в том случае, если эти множества пересекаются.

Пусть множество А содержит n  элементов, множество В содержит m элементов, и пересечение этих множеств   содержит k элементов. То есть k элементов содержатся и в множестве А, и в множестве В. Тогда объединение множеств содержит  m+n-k элементов.

Действительно, при объединении двух множеств мы k элементов посчитали два раза, и теперь один раз мы должны их вычесть.

Число элементов в множестве обозначается общепринятым значком #.  Тогда формула для подсчета числа элементов в объединении трех множеств имеет вид:

########

Рассмотрим примеры задач.

1. Сколько трехзначных чисел содержит хотя бы одну цифру 3?

Решение.

показать

2. Сколько четырехзначных чисел, кратных 5.

Решение.

показать

 

Перестановки

Воспользуемся правилом умножения чтобы ответить на вопрос, "сколькими способами можно построить 7 человек в шеренгу?".

Человека, стоящего первым в шеренге можно выбрать семью способами, второго можно выбрать из оставшихся шести человек, то есть шестью способами. Третьего, соответственно, пятью. И так далее. Последнего можно выбрать единственным способом. Всего получаем способов построить 7 человек в шеренгу.

В общем случае, если мы имеем объектов, которые хотим расположить в определенном порядке (пронумеровать их), то мы получим

способов расположения этих объектов.

Факториалом натурального числа называется произведение всех натуральных чисел от 1 до :

По определению 0!=1; 1!=1.

Перестановкой из предметов называется любой способ нумерации этих предметов (способ расположения их в ряд).

Число перестановок предметов равно .

3. Имеется 10 компьютерных дисков и 10 коробок от них. Найдите вероятность того, что случайным образом уложив диски в коробки, мы обнаружим, что

1. Каждый диск лежит в своей коробке.

2. Хотя бы один диск лежит не в своей коробке.

3. Два определенных диска перепутаны местами, а остальные в своих коробках.

4. Ровно один лежит не в своей коробке, а остальные  - в своих коробках.

Решение.

показать

4. Слово "МАТЕМАТИКА" написали на полоске картона и разрезали полоску на буквы. Найдите вероятность того, что составив все эти буквы случайным образом в ряд, мы снова получим слово "МАТЕМАТИКА".

Сколько буквосочетаний можно составить из букв слова "МАТЕМАТИКА"?

Решение.

показать

Размещения

В задачах по теории вероятностей часто возникает необходимость определить, сколькими способами можно выбрать определенное число предметов и расположить их в определенном порядке.

5. Сколько существует различных вариантов выбора 4-х кандидатур из 9-ти специалистов для поездки в 4 различных страны?

Воспользуемся правилом умножения.

В первую страну мы выбираем из 9 специалистов, то есть у нас 9 вариантов выбора. После того, как специалист для поездки в первую страну выбран, у нас осталось 8 специалистов, и для поездки во вторую страну у нас 8 вариантов выбора. И так далее... в четвертую страну мы можем выбрать кандидата из 6 специалистов.

Таким образом, мы получаем вариантов выбора 4-х кандидатур из 9-ти специалистов для поездки в 4 различных страны.

Обобщим эту задачу на случай выбора k кандидатур из n специалистов для поездки в k различных стран.

Рассуждая аналогичным образом, мы получаем

   

вариантов.

Если умножить и разделить это выражение на , то получим следующую формулу:

   

В этой задаче из множества, состоящего из элементов мы выбрали упорядоченные подмножества (для нас был важен порядок расположения элементов в подмножестве), состоящие из  элементов.  Задача сводилась к нахождению числа таких подмножеств.

Такие упорядоченные подмножества называются размещениями из n элементов по k.

Пусть у нас есть множество , состоящее из элементов. Размещением (из n по k) называется упорядоченное подмножество из различных элементов из некоторого множества , состоящего из различных  элементов.

Число размещений из элементов по обозначается и находится по формуле:

   

Размещения с повторениями

6. Игральную кость бросают трижды. Сколько различных комбинаций выпавших очков при этом получится?

При бросании кости первый раз мы получим 6 различных вариантов: 1 очко, 2, 3... или 6. Аналогично при бросании кости во второй и в третий раз мы получим также по 6 различных вариантов. По правилу умножения  получим число различных комбинаций трех чисел, принимающих значения от 1 до 6:

В общем случае:

Пусть у нас есть множество , состоящее из элементов.

Любой упорядоченный набор элементов множества, состоящего из элементов называется размещением с повторением из элементов по . Число различных размещений с повторениями равно

   

.

Действительно. Представим ящик с пронумерованными шарами. Мы вынимаем шар, записываем его номер и возвращаем обратно,  и так раз. Сколько комбинаций из номеров мы можем получить?

Поскольку шары каждый раз возвращаются, каждый раз, вынимая шар из коробки, в которой шаров, мы можем получить различных чисел. По правилу умножения имеем

   

Сочетания

Рассмотрим задачу, аналогичную задаче 5, но с существенным отличием.

7. Сколько существует различных вариантов выбора 4-х кандидатур из 9-ти специалистов?

В этой задаче нам нужно выбрать 4 кандидатуры, но при этом не важно, в каком порядке мы их выбираем, нас интересует только состав выбранных элементов, но не порядок их расположения.

Если бы нас интересовал порядок расположения элементов, как в задаче 5, то мы могли применили бы формулу для нахождения числа размещений из 9 по 4:

   

4 различных элемента можно расположить в определенном порядке 4! различными способами. Поскольку нас не интересует порядок расположения элементов, число способов, которыми мы можем выбрать 4 элемента, не располагая их в определенном порядке, уменьшается в 4! раза по сравнению с предыдущей задачей (так как для данной задачи различное расположение данных элементов считается одним способом), и мы получаем

   

способов.

В этой задаче появляется понятие сочетания.

Сочетаниями  из n элементов по k элементов называются подмножества, состоящие из k элементов множества (множества, состоящего из n элементов).

Внимание! Одно сочетание от другого отличается только составом выбранных элементов (но не порядком их расположения, как у размещений).

Число сочетаний из n элементов по k элементов обозначается 

   

и находится по формуле:

   

Число сочетаний из  n по k показывает, сколькими способами мы можем выбрать k элементов из n элементов, или сколькими способами мы можем расположить k объектов по n местам.

Легко заметить, что

   

   

8.  В коробке лежат 8 красных карандашей и 4 синих. Из коробки наугад вынимают 4 карандаша. Какова вероятность того, что среди них окажется 2 красных и 2 синих?

Решение.

показать

Метод шаров и перегородок

9. Сколькими способами можно разложить 10 шаров в 4 коробки? Предполагается, что некоторые коробки могут оказаться пустыми.

Решение.

Рассмотрим 10 шаров:

Будем "раскладывать шары  по коробкам", ставя перегородки.

Например, так:

В этом примере в первой коробке  3 шара, во второй  - 2, в третьей - 4, и в четвертой - 2. Переставляя шары и перегородки, мы получаем различные комбинации шаров в коробках. Например, переставив последний шар в первой коробке и первую внутреннюю перегородку, мы получим такую комбинацию:

Таким образом, мы получаем различное число шаров в коробках, комбинируя позиции 10-ти шаров и 3-х внутренних перегородок. Чтобы определить, сколько различных комбинаций мы можем получить, нам нужно найти число сочетаний из 13 по 3. (Или, что то же самое, что число сочетаний из 13 по 10.) Столько способов выбрать 3 места для перегородок из 13 возможных позиций. Или, что то же самое, 10 мест для шаров.

   

10. Сколько решений имеет уравнение в целых неотрицательных числах?

Решение.

Так как переменные могут принимать только целые неотрицательные значения, следовательно, у нас есть 10 переменных, и они могут принимать значения 0, 1, 2, 3 и 4. Представим, что у нас есть 10 коробок (это переменные), и мы должны разложить по этим коробкам 4 шара. Сколько шаров попадет в коробку, таково значение соответствующей переменной. Если у нас 10 коробок, следовательно, 10-1=9 внутренних перегородки. И 4 шара. Всего 13 мест. Нам надо расположить на этих 13 местах 4 шара. Число таких  возможностей:

   

В общем случае, если нам нужно разложить шаров в коробок, мы получаем комбинации из шаров  и внутренней перегородки. И число таких комбинаций равно числу сочетаний из по .

   

В этой задаче мы имели дело с сочетаниями с повторениями.

Сочетания с повторениями

Сочетаниями из элементов по элементов с повторениями называются группы, содержащие элементов, причем каждый элемент принадлежит к одному из типов.

Что такое сочетания из элементов по элементов с повторениями можно понять с помощью такого мысленного эксперимента. Представим ящик с пронумерованными шарами. Мы вынимаем шар, записываем его номер и возвращаем обратно,  и так раз. В отличие от размещений с повторениями нас не интересует порядок записанных чисел, а только их состав. Например, группы чисел {1,1,2,1,3,1,2} и {1,1,1,1,2,2,3} считаются одинаковыми. Сколько таких групп из  номеров мы можем получить?

В конечном итоге нас интересует сколько элементов каждого типа (всего n типов элементов) содержится в каждой группе (из k элементов), и сколько таких различных вариантов может быть. То есть мы находим, сколько  в целых неотрицательных решений имеет уравнение уравнение   - задача аналогична задаче по раскладыванию n шаров в k  коробок.

Число сочетаний с повторениями находится по такой формуле:

   

Таким образом, число сочетаний с повторениями - это количество способов представить число k в виде суммы n слагаемых.

И.В. Фельдман, репетитор по математике.

 

Элементы комбинаторики

Отзывов (4)

  1. Александра

    спасибо.все понятно и просто

  2. Иван

    2*3*2=12, а у вас 24 в разделе «перестановка», в задании про слово математика.

    • Инна

      Конечно, спасибо!

      • Вера

        Добрый день. Мне кажется что в задаче про математику все таки ошибка. Числа получаются в два раза меньше, чем у вас. Даже если двумя способами делать.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *