Внешний угол треугольника. Задание В8


Если в геометрической задаче присутствуют слова «внешний угол треугольника«, нам надо вспомнить несколько фактов:

1. Внешним углом треугольника называется угол, смежный с каким-либо углом треугольника:


2. Сумма смежных углов равна 180°

3. Внешний угол треугольника равен сумме двух углов, не смежных с ним:

alpha=beta+gamma

 Чтобы найти синус, косинус или тангенс внешнего угла треугольника, нужно найти эту функцию соответствующего внутреннего угла, а затем воспользоваться следующим формулами приведения:

cos(180^{circ}-{alpha})=-cos{alpha} (1)

sin(180^{circ}-{alpha})=sin{alpha} (2)

tg(180^{circ}-{alpha})=-tg{alpha} (3)

Необходимо также вспомнить, как тригонометрические функции острого угла выражаются одна через другую:

sin{alpha}=sqrt{1-cos^2{alpha}}

cos{alpha}=sqrt{1-sin^2{alpha}}

cos{alpha}=sqrt{1/{1+tg^2{alpha}}}

tg{alpha}={sin{alpha}}/{cos{alpha}}

Прежде чем приступать к разбору решений задач, рекомендую вам прочитать статью о соотношении сторон и углов в прямоугольном треугольнике.

Рассмотрим решение задач из  Открытого банка заданий для подготовки к ЕГЭ  по математике: .

1. Задание B6 (№ 27382)

В треугольнике ABC угол C равен 90^{circ}AB=sqrt{17}AC=4. Найдите тангенс внешнего угла при вершине A.

Найдем тангенс угла А, а затем воспользуемся формулой приведения.

tgA={BC}/{AC}

АС=4, ВС найдем по теореме Пифагора:

BC=sqrt{{AB}^2-{AC}^2}=sqrt{17-16}=1

Отсюда  tgA=1/4=0,25 . Соответственно, по формуле приведения (3), тангенс внешнего угла при вершине А равен -0,25.

Ответ: -0,25

2. Задание B6 (№ 27386)

В треугольнике ABC угол C равен 90^{circ}, синус внешнего угла при вершине A равен 0,1. Найдите sinA.

Воспользуемся формулой приведения (2): sinA=0,1

Ответ: 0,1.

3. Задание B6 (№ 27387)

В треугольнике ABC угол C равен 90^{circ}, синус внешнего угла при вершине A равен 7/{25}. Найдите cosA.

Найдем сначала sin A. Он равен синусу внешнего угла треугольника при вершине А. То есть  sinA=7/{25}.

Найдем cosA c помощью основного тригонометрического тождества:

cosA=sqrt{1-({7/25})^2}=sqrt{{576}/{625}}={24}/{25}=0,96 

Ответ: 0,96

4. Задание B6 (№ 27389)

В треугольнике ABC угол C равен 90^{circ} , синус внешнего угла при вершине A равен 7/{25}. Найдите sinB.

Найдем сначала sin A. Он равен синусу внешнего угла треугольника при вершине А. То есть  sinA=7/{25}.

Сумма острых углов прямоугольного треугольника равна 90°, поэтому sinB=sin(90^{circ}-A)=cosA=0,96

Ответ: 0,96

5. Задание B6 (№ 27392)

В треугольнике ABC угол C равен  90^{circ}, косинус внешнего угла при вершине A равен  7/{25}. Найдите sinA.

Если  косинус внешнего угла при вершине A равен -7/{25}, то cos A=7/{25}. Отсюда sinA=0,96

Ответ: 0,96

И.В. Фельдман, репетитор по математике.

Купить видеокурс «ВСЯ ГЕОМЕТРИЯ. Часть В»

Другие записи из категории "07 Задание (2015) (B8-2014)":

Отзывов (5)

  1. Хороший у вас сайт, информативный! Правда малышня моя ещё в школу не ходит.

  2. Жаль, когда в школе учился, такого ресурса не было. :) Удачи в развитии. :)

  3. Макс:

    Почему в задании 2 ответ: -0.1 !?

  4. Вероника:

    В задаче 5 в условии неверно указан знак дроби)

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>